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Abstract

We study a forcing notion analogous to Mathias forcing defined in the space
of infinite block sequences of finite sets of natural numbers.
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Introduction

In this article we study certain classes of ultrafilters on the set of natural numbers that
are linked to combinatorial theorems in the realm of Ramsey theory. We pay particular
interest to some related forcing notions. The space FIN∞ of block sequences of finite
sets of natural numbers is of central importance in this study.

We first recall the definition of the Ramsey property for subsets of the space [N]∞ of
all infinite sets of natural numbers. With the product topology (the topology inherited
from the product topology on 2N), this space is homeomorphic to R \Q, the irrational
numbers. The exponential topology of this space, also called the Ellentuck topology, is
finer than the product topology and it is generated by the basic sets of the form

[a,A] = {X ∈ [N]∞ : a @ X ⊆ A},

where a is a finite set of natural numbers, A is an infinite subset of N, and a @ X
means that a is an initial segment of X in its increasing order.

We say that a subset A ⊆ [N]∞ is Ramsey, or has the Ramsey property, if for
every [a,A] there is an infinite subset B of A such that [a,B] ⊆ A or [a,B] ∩ A = ∅.
Silver proved that all analytic subsets of [N]∞ have the Ramsey property. His proof has
a metamathematical character, as opposed to the combinatorial proof of Galvin and
Prikry for the Borel sets. Ellentuck [5] gave a topological proof of Silver’s result by
showing that a subset of [N]∞ is Ramsey if and only if it has the property of Baire with
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respect to the exponential topology. Similar results have been obtained for the space
FIN∞ of infinite block sequences of finite sets of natural numbers (see [12]).

Using the axiom of choice a set that is not Ramsey can be found, but Mathias, in
[10], shows that it is consistent with ZF+DC (Zermelo-Fraenkel set theory with the
axiom of dependent choices) that every subset of [N]∞ is Ramsey, provided that ZFC is
consistent with the existence of an inaccessible cardinal. For this, Mathias introduced a
forcing notion that we will describe below. Here, we study some forcing notions related
to the Ramsey theory of FIN∞.

Garćıa Ávila makes a comparative study of these and other forcing notions in [7],
and in particular, a forcing notion analogous to Mathias forcing adapted to the space
FIN∞. She proves that this notion has a pure decision property (a Prikry property) and
asks if it has a property analogous to the Mathias property that an infinite subset of a
Mathias generic real is also a Mathias generic real. We answer this question positively.

We use standard set theoretic notation. The set of natural numbers is called indis-
tinctly N and ω. Each natural number n is identified with the set of its predecessors
{0, . . . , n − 1}. If X is a set, [X]n is the collection of subsets of X with exactly n
elements; [X]∞ is the collection of infinite subsets of X. [X]<∞ =

⋃
n∈ω[X]n is the set

of finite subsets of X.

1 Ultrafilters on N related to theorems of Ramsey

and Hindman

We start recalling definitions of certain types of ultrafilters on the set of natural numbers
N. In particular we will consider selective ultrafilters and strongly summable ultafilters.
Selective ultrafilters on N are related to Ramsey’s theorem, and strongly summable
ultrafilters, to Hindman’s theorem on finite sums. Union ultrafilters play a similar rôle
with respect to the finite unions version of Hindman’s theorem. These ultrafilters are
studied in [1, 2]. Forcing notions connected to these types of ultrafiters have been
considered in [4, 7, 10].

As usual, βN is the set of ultrafilters on N. Identifying each natural number with
the principal ultrafilter it generates, βN \ N denotes the collection of non-principal
ultrafilters on N.

Definition 1 Let (ni)i∈ω be an infinite strictly increasing sequence of positive integers.

FS((ni)) :=

{∑
i∈F

ni : ∅ 6= F ∈ [N]<∞

}
.

Definition 2 Let U ∈ βN \ N . Then,
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(1) U is a P -point if for every partition N =
⋃

n<ω An into subsets that are not in
U , there is B ∈ U such that |An ∩B| < ω for every n ∈ ω.

(2) U is a Q-point if for every partition N into finite sets {An : n ∈ ω}, there is
B ∈ U such that |An ∩B| ≤ 1.

(3) U is selective if for every partition N =
⋃

n∈ω An where no An is element of U ,
there is B ∈ U such that |An ∩B| = 1 for every n ∈ ω.

(4) U is strongly summable if for every A ∈ U there is an infinite set {nk : k ∈ ω}
of positive integers such that FS((nk)) ∈ U and FS((nk)) ⊆ A.

It is easy to verify that an ultrafilter U ∈ βN \ N is selective if and only if it is a
P -point and a Q-point.

We state now the following theorems of Ramsey and Hindman.

Theorem 1 (Ramsey) Given positive integers n, r, for every c : [N]n → r there is an
infinite set H ⊆ N such that c is constant on [H]n.

Such a set H is said to be homogeneous for c.

Theorem 2 (Hindman) Let r be a positive integer. For every c : N \ {0} → r there is
an infinite strictly increasing sequence (ni)i∈ω of positive integers such that c is constant
on FS((ni)).

The following propositions show how the types of ultrafilters defined above are
related to these theorems.

Proposition 1 Let U ∈ βN\N. Then U is selective if and only if for every c : [N]2 → 2
there is H ∈ U such that c is constant on [H]2.

It is customary to refer to the function c as a coloring, and to say that [H]2 is
monochromatic for c.

Proposition 2 Let U ∈ βN \N. Then U is strongly summable if and only if for every
coloring c : N \ {0} → 2 there is an infinite B ⊆ N such that FS(B) is monochromatic
and FS(B) ∈ U .
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2 Ultrafilters on the set of finite subsets of N.

Let FIN = [N]<∞\{∅} be the collection of non-empty finite sets of natural numbers. By
FIN∞ we denote the collection of all block sequences of elements of FIN, that is to say,
all infinite sequences a0, a1 . . . where, for all i ∈ ω, ai ∈ FIN and max(ai) < min(ai+1).
FIN<∞ denotes the collection of finite block sequences of elements of FIN.

If (si)i∈ω is a collection of pairwise disjoint elements of FIN,

FU((si)) :=

{⋃
i∈F

si : F ∈ FIN

}
.

Definition 3 An utrafilter U on FIN is said to be a union ultrafilter if for every A ∈ U
there is a pairwise disjoint infinite subset {an : n ∈ ω} of FIN such that FU({an}) ∈ U
and FU({an}) ⊆ A.

To motivate this definition we state now a version of Hindman’s theorem in terms of
finite unions. This gives also some intuition about the relation between union ultrafilters
on FIN and strongly summable ultrafilters on N

Theorem 3 (Hindman’s theorem for unions) Let c : FIN → 2, then there exists
an infinite collection {an : n ∈ ω} of pairwise disjoint elements of FIN such that
FU({an}) is monochromatic for c.

The set {an : n ∈ ω} in the conclusion of Hindman’s theorem for unions can be
required to be in block position.

Definition 4 An ultrafilter U on FIN is an ordered-union ultrafilter if for every A ∈ U
there is a block sequence {an : n ∈ ω} ⊆ [N]<∞such that FU({an}) ∈ U and FU({an}) ⊆
A.

Let max : FIN → N be the function that sends each finite set s ∈ FIN to its
maximal element. If U is an ultrafilter on FIN, we call max(U) the ultrafilter on N
given by {A ⊆ N : max−1(A) ∈ U}.

Theorem 4 ( [1, 2]) If U is a union ultrafilter on FIN, then max(U) is a P -point. If
U is an ordered-union ultrafilter on FIN, then max(U) is also a Q-point, and therefore
selective.

This shows in particular that the existence of union ultrafilters and of ordered-union
ultrafilters cannot be proved in ZFC. Nevertheless, their existence follows from CH
or Martin’s axiom.
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Definition 5 [2] Given an ultrafilter U ∈ βFIN and an ultrafilter V ∈ βN we say that
they are additively isomorphic if there is A ⊆ FIN and B ⊆ N such that FU(A) ∈ U ,
FS(B) ∈ V and there is a bijection f : FU(A)→ FS(B) such that:

(1) f [A] = B.

(2) For every non-empty F ∈ [A]<ω, f
(⋃

a∈F a
)

=
∑

a∈F f(a).

(3) βf(U) = V.

The following theorem shows that strongly summable ultrafilters and union ultra-
filters are equivalent.

Theorem 5 ([2]) Every strongly summable ultrafiter is additively isomorphic to a union
ultrafilter. Every union ultrafilter is additively isomorphic to a strongly summable ultra-
filter.

3 Ultrafilters and forcing

It is well known that the partial order ([N]∞,⊆∗), where A ⊆∗ B means that A \ B is
finite (A is almost contained in B), is a forcing notion that adds a selective ultrafilter
without adding subsets of N.

We will consider an analogous forcing notion for ultrafilters on FIN.
The metric topology on FIN∞ is the topology generated by the sets of the form

[s] = {X ∈ FIN∞ : s @ X},

where s ∈ FIN<∞ and s @ X means that s is an initial segment of X.
Consider the binary relation defined on FIN∞ by X ≤ Y if X is a condensation of

Y , that is, every element of X is a finite union of elements of Y , and so, X ⊆ FU(Y ).
We say that X is almost a condensation of Y , and write X ≤∗ Y , to express that
X ⊆∗ FU(Y ).

Consider also the functions rn : FIN∞ → FINn given by setting rn(X) equal to the
finite block sequence given by the first n elements of X.

Proposition 3 The partial order (FIN∞,≤∗) is σ-closed.

Proof. Let {An : n ∈ ω} ⊆ FIN∞ a sequence such that An+1 ≤∗ An for every n ∈ ω,
i.e. An+1 ⊆∗ FU(An). We have then that the family {FU(An) : n ∈ ω} has the strong
finite intersection property SFIP (every finite intersection of elements of the family is
infinite). Let a0 ∈ FU(A0). If we have defined a0, a1, ..., an take

an+1 ∈
⋂

i≤n+1

FU(Ai)
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such that min(an+1) > max(an). Let A := {an : n ∈ ω}, then A ⊆∗ FU(An) for every
n ∈ ω and therefore A is an almost condensation of each An. �

Definition 6 An ordered-union ultrafilter U on FIN is stable if for every sequence
{Dn : n ∈ ω} ⊆ FIN∞ such that FU(Dn) ∈ U for every n ∈ ω, there is E ∈ FIN∞ such
that FU(E) ∈ U and E ≤∗ Dn for every n.

Theorem 6 ([4]) Consider the forcing notion (FIN∞,≤∗) in V . Let G be a FIN∞-
generic filter over V . Then

UG := {A ⊆ FIN : ∃B ∈ G(FU(B) ⊆ A)}

is a stable ordered-union ultrafilter in V [G].

We include the proof for convenience.
Proof. Working in V , given A ⊆ [N]<∞, consider the set

DA := {B ∈ FIN∞ : FU(B) ⊆ A or FU(B) ∩ A = ∅}.

Note that A induces a partition FU(B) = (A ∩ FU(B)) ∪ (([N]<∞ \ A) ∩ FU(B)). By
Hindman’s theorem for unions, there is C ∈ FIN∞ such that FU(C) is contained in
one of the parts of the partition. Also, C ⊆ FU(C) ⊆ FU(B) and therefore C ≤ B.
We conclude that DA is dense, and so it contains an element of G. By Proposition
3 there are no new elements of FIN∞ in V [G], and thus UG is an ultrafilter in V [G].
The stability of UG also follows from Proposition 3, and that UG is an ordered-union
ultrafilter is clear. �

Given a stable ordered-union ultrafilter U , let U∞ denote the set of sequences A ∈
FIN∞ such that FU(A) ∈ U . Using the notation of the previous theorem, U∞G = G and
so V [G] = V [UG].

Corollary 1 If G is a FIN∞-generic filter over V , then

V [G] |= “There is a strongly summable ultrafilter”

4 Mathias style forcing

In [10], Mathias defined a forcing notion now known as Mathias forcing, given by

M := {(s, A) : s ∈ [N]<∞, A ∈ [N]∞ and max(s) < min(A)}
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with the order relation (s, A) ≤ (t, B) if and only of t ⊆ s, A ⊆ B and s \ t ⊆ B.
This forcing notion was used to show that in Solovay’s model where every set of real

numbers is Lebesgue measurable [11], every subset of [N]∞ is Ramsey.
If G ⊆M is an M-generic filter, then

⋃
{s ∈ FIN : ∃A(s, A) ∈ G} is called a Mathias

real. Mathias forcing has the pure decision property and the hereditary genericity
property. These properties are stated as follows.

Pure decision (or Prikry property): Given a sentence ϕ of the forcing language
and (s, A) ∈M, there is B ⊆ A such that (s, B) decides ϕ;

Hereditary genericity (or Mathias property): If x is a Mathias real, and y ⊆ x
is infinite, then y is also a Mathias real.

Various ways to adapt this forcing notion to the context of FIN∞ have been studied
by Eisworth, Matet, and Garćıa Ávila among others. We will concentrate here on the
forcing notion called PFIN in [7] which is defined below.

Given s ∈ FIN<∞, let max(s) := max({max(a) : a ∈ s}), the maximum of the
top block of s. Similarly, min(s), for a finite or infinite block sequence s, denotes the
minimal element of the first block of the sequence.

Let A ∈ FIN∞ and s ∈ FIN<∞,

A/s := {a ∈ A : max(s) < min(a)}

the block sequence formed by the blocks of A that are above s.
Given s ∈ FIN<∞ and a finite or infinite block sequence B, we say that s is an

initial segment of B (s v B) if r|s|(B) = s.

Definition 7 PFIN is defined by

PFIN := {(s, A) : s ∈ FIN<∞, A ∈ FIN∞ and max(s) < min(A)}

with the order relation (s, A) ≤ (t, B) if t v s, A ≤ B and s \ t ⊆ FU(B).

Garćıa Ávila in [7] proves that PFIN has the pure decision property and asks if it
also has the hereditary genericity property.

In this context, the hereditary genericity property is a natural variant of the Mathias
property of M that can be stated replacing containment by condensation. Given a model
V of ZFC, G a PFIN -generic filter over V , if a block sequence X is PFIN -generic over
V and Y ≤ X then Y is also generic.

Here, a block sequence X ∈ V [G] is PFIN -generic over V if there is a PFIN -generic
filter H over V such that X =

⋃
{s : ∃A((s, A) ∈ H)}.

Whether this property holds was first asked in 2013 by Garćıa Ávila in her disserta-
tion [6]. To answer this question we adapt Mathias’ arguments from [10] and a theorem
of Eisworth from [4] to the context of PFIN .
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Definition 8 Let A = {As : s ∈ FIN<∞} ⊆ FIN∞. We say that B ∈ FIN∞ is a
diagonalization of A if for every s ∈ FIN<∞ whose top block s is in FU(B), B/s ≤ As.

The following theorem is due to Blass (see [1] 4.2). It establishes a Ramsey-like
property equivalent to stability for ordered-union ultrafilters.

Given X ⊆ [N]<∞, define

[X]2< := {{a, b} ∈ [X]2 : max(a) < min(b)}.

Theorem 7 ([1]) Let U be an ordered-union ultrafilter. Then U is stable if and only
if for every c : [[N]<∞]2< → 2 there is H ∈ U such that [H]2< is monochromatic.

Blass’ theorem actually establishes the equivalence of stability with several other
properties, but we will use this particular one to prove a slight variation of a result of
Eisworth (1.3 of [4]).

Corollary 2 Let U be a stable ordered-union ultrafilter and A = {Ab : b ∈ [N]<∞} ⊆
U∞. Then there is a diagonalization B ∈ U∞, of A.

Proof. By the stability of U , we can take C ∈ U∞ such that C ≤∗ Ab for every
b ∈ [N]<∞ and a function f : [N]<∞ → N such that C/{f(b)} ≤ Ab. Define a coloring
of [FU(C)]2< as follows:

g({a, b}) =

{
1 f(a) < min(b)
0 otherwise

By Theorem 7 there is B ∈ U∞, a condensation of C such that [FU(B)]2< is monochro-
matic. Note that c � [FU(B)]2< = 1 since given a ∈ FU(B) we can find b ∈ FU(B)
with min(b) arbitrarily big. Given b ∈ FU(B) we have then that f(b) < min(B/b) and
therefore B/b ≤ Ab. �

Corollary 2 also holds for families indexed by FIN<∞. If {As : s ∈ FIN<∞} ⊆ U∞ we
can find a diagonalization in U∞, since given b ∈ [N]<∞ we take Ab equal to some X such
that X ≤ As for every s with top block b. Clearly, a diagonalization of {Ab : b ∈ [N]<∞}
is a diagonalization for the initial family.

We follow now Mathias’ construction in [10], adapted to block sequences.

Definition 9 Let (s, A) ∈ PFIN and O ⊆ FIN∞. We say that (s, A) forces O and
write (s, A)  O if

[s, A] := {X ∈ FIN∞ : s v X and X/s ≤ A} ⊆ O.

We say that (s, A) decides O, and write (s, A)||O, if (s, A) forces O or it forces FIN∞ \
O.
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Given a stable ordered-union ultrafilter U , define the forcing notion

PU := {(s, A) : s ∈ FIN<∞ and A ∈ U∞}

with the order inherited from PFIN .

Theorem 8 Let U be a stable ordered-union ultrafilter on FIN. Let O ⊆ FIN∞ be open
with respect to the product topology. Then, there is B ∈ U∞such that (∅, B)||O.

Proof. Let N = {{n} : n ∈ N}. For every s ∈ FIN<∞, choose As ∈ U∞ such
that (s, As)||O if possible, otherwise put As = N/s. Let A be a diagonalization of
{As : s ∈ FIN<∞}. Define φ : FIN<∞ → 3 by

φ(s) =


0 if (s, As)  O
1 if (s, As)  FIN∞ \ O
2 otherwise.

If φ(s) = 2 then {b ∈ FU(A/s) : φ(s ∪ {b}) = 2} ∈ U . To show this, put, for every
i = 0, 1, 2, Si = {b ∈ FU(A/s) : φ(s∪{b}) = i}. Then, if b ∈ S0, (s∪{b}, A/(s∪{b})) 
O.

Notice that {B ∈ FIN∞ : s @ B and B/s ⊆ S0} =

=
⋃
b∈S0

{B ∈ FIN∞ : s ∪ {b} @ B and B/(s ∪ {b}) ⊆ S0/(s ∪ {b})}.

This union is contained in O, since for every b ∈ S0, (s ∪ {b}, A/(s ∪ {b}))  O.
Similarly, if b ∈ S1, {B ∈ FIN∞ : s @ B and B/s ⊆ S1} is disjoint from O.
If φ(s) = 2, then (s, As) does not decide O, thus when defining As, this set was

set As = N/s, since for no C ∈ U∞, (s, C)||O. Thus, S0 /∈ U , because if S0 ∈ U then
As ∈ U∞ and (s, A/s)  O, but there is no C ∈ U∞ with this property. Similarly,
S1 /∈ U . Therefore S2 ∈ U as S0 ∪ S1 ∪ S2 = FU(A/s).

Suppose now that φ(∅) = 2. For every s, put Bs = FU(A/s) if s 6⊆ A or φ(s) 6= 2,
and Bs = {b ∈ FU(A/s) : φ(s ∪ b) = 2} if φ(s) = 2.

Since U is an ordered-union ultrafilter, we can take for each s ∈ FIN<∞, Cs ∈ U∞
such that FU(Cs) ⊆ Bs. Let D be a diagonalization of {Cs : s ∈ FIN<∞}.

Let us show that for s ⊆ D finite, φ(s) = 2. Let s ⊆ D finite a counterexample of
minimal cardinality. By our assumption s 6= ∅. Let b be the top block of s; and let
t = s \ b. We have then that φ(t) = 2, and since b ∈ D/t ⊆ FU(Ct) ⊆ Bt, we get that
φ(t ∪ {b}) = φ(s) = 2 which contradicts our choice of s.

This leads us to a contradiction, because if (∅, D) does not decide O, then there is
E ≤ D such that E ∈ O, and thus there is n such that (rn(E), N/rn(E)) ⊆ O and the-
refore φ(rn(E)) = 0 contradicting what we have just showed. Then φ(∅) cannot be 2. �
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Definition 10 Let U a stable ordered-union ultrafilter, D ⊆ PU dense open and s ∈
FIN<∞. We say that X ∈ FIN∞ captures (s,D) if

(i) X ∈ U∞,

(ii) X is above s, i.e. max(s) < min(X),

(iii) For every Y ≤ X there is t @ Y such that (s ∪ t,X/t) ∈ D.

Lemma 1 Let U a stable ordered-union ultrafilter and D ⊆ PU dense open. For every
s ∈ FIN<∞, there exists X ∈ U∞ such that X captures (s,D)

Proof. Let N = {{n} : n ∈ N}. Fix s ∈ FIN<∞, and let C = N/s. For every
t ∈ FIN<∞, if max(s) < min(t), let At ∈ U∞ be such that (s ∪ t, At) ∈ D if such an At

exists, otherwise or if t is not above s, put At = C/t. Let B ∈ U∞ be a diagonalization
of the collection {At : t ∈ FIN<∞}. For every t of which the top block is in FU(B), if
there is some B′ ∈ U∞ such that (s ∪ t, B′) ∈ D, then (s ∪ t, B/t) ∈ D.

Let
O = {A ∈ FIN∞ : A ≤ B → ∃t @ A(s ∪ t, B/t) ∈ D}.

The set O is open in the product topology of FIN∞, so there is E ∈ U∞ such that
(∅, E)||O.

Since U is an ordered-union ultrafilter, there isX ∈ U∞ such that FU(X) ⊆ FU(B)∩
FU(E) ∈ U ; and since D is dense, there are u @ X and X ′ ≤ X such that (s∪u,X ′) ∈ D
(and obviously (s ∪ u,X ′) ≤ (s,X)).Then, (s ∪ u,B/u) ∈ D, and thus u ∪ X ′ ∈ O.
Since u ∪X ′ ⊆ FU(X) ⊆ FU(E), u ∪X ′ ≤ E, and therefore, (∅, E)  O.

To verify that X captures (s,D), take Y ≤ X There is t @ Y such that (s∪t, B/t) ∈
D, and as D is open, (s ∪ t,X/t) ∈ D.

�

Theorem 9 Let U ∈ V be a stable ordered-union ultrafilter and X ∈ FIN∞. Then X
is PU -generic over V if and only if X ≤∗ A for every A ∈ U∞.

Proof. Suppose first that X is PU -generic over V . For every X ∈ U∞, the set
{(s, A) ∈ PU : A ≤ X} is dense, and therefore there is (s, A) ∈ PU such that s @ X
and X/s ≤ X. We have then that the generic filter associated to X has non-empty
intersection with this dense set. In other words, there is some (s, A) ∈ PU such that
s @ X and X/s ≤ A ≤ X. Thus X ≤∗ X.

Suppose now that X ≤∗ X for every X ∈ U∞, and let D ∈ V dense open subset
of PU . Working in V , by Lemma 1 let, for every s ∈ FIN<∞, Xs ∈ U∞ be such that
Xs captures (s,D) and let X ∈ U∞ be a diagonalization of {Xs : s ∈ FIN<∞}. By
our assumption, X ≤∗ X. Let m ∈ N be such that X/rm(X ) ≤ X. The top block of
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rm+1(X ) is in FU(X), so X/rm+1(X ) ≤ X/rm+1(X ) ≤ Xrm+1(X) and thus X/rm+1(X )
captures (rm+1(X ), D).

Thus in V ,

(∗) ∀Y ≤ X/rm+1(X )∃t @ Y such that (rm+1(X ) ∪ t,X/t) ∈ D.

Let P = {t ∈ FIN<∞ : t @ X/rm+1(X ) and (rm+1(X ) ∪ t,X/t) /∈ D}. Define a
partial order on P by s ≤ t if t v s.

We have then that (P,≤) ∈ V , and that property (∗) is equivalent to the assertion
that (P,≤) is well founded. Since to be well founed is absolute, there is in the real
world t @ X/rm+1(X ) such that (rm+1(X ) ∪ t,X/t) ∈ D. Also, rm+1(X ) ∪ t @ X , and
X/t ≤ X/t. Thus, X is generic over V . �

Lemma 2 1. Let X be PFIN -generic over V , and let G = {A ∈ FIN∞ ∩ V : X ≤∗
A}. Then, G is a FIN∞-generic fiter over V and X is PUG-generic over V [G].

2. Let G be a FIN∞-generic filter over V and X PUG-generic over V [G]. Then X is
PFIN -generic over V .

Proof.

1. To show that G is FIN∞-generic over V , let D ⊆ FIN∞ be dense open D ∈ V and
let D′ = {(s, A) : A ∈ D}. We have then that D′ is dense and thus there is
(s, A) ∈ D′ such that s @ X and X/s ≤ A, giving that A ∈ G, and thus G is
FIN∞-generic over V . Since FIN∞ is a σ-closed partial order

we have that X is PUG-generic over V [G].

(2) Let PFIN ⊇ D ∈ V dense open, and put

D′ := {(s, A) ∈ D : A ∈ U}

D′′ := {A ∈ FIN∞ : ∃s((s, A) ∈ D)}.

Note that D′′ ∈ V is dense open, and thus, since G is FIN∞-generic, D′ ∈ V [G]
is also dense open. Now, as X is generic over V [G] there is (s, A) ∈ D′ ⊆ D such
that s v X and X/s ≤ A. We have then that X is PFIN -generic over V .

�

This shows that a forcing extension obtained using PFIN can be seen as an iteration,
first adding a stable ordered-union ultrafilter U by (FIN∞,≤∗) and then forcing with
PU .



344 D. Calderón and C. A. Di Prisco

Corollary 3 Let X a PFIN-generic block sequence over V and Y ≤ X. Then Y is also
generic over V .

Proof. It follows from Theorem 9 and Lemma 2. �

5 Concluding remarks

In [4], Eisworth defines a class of subsets of FIN∞ which he calls Matet-adequate fami-
lies.

Definition 11 A family H ⊆ FIN∞ is said to be Matet-adequate if:

(1) For every A ∈ H and B ∈ FIN∞, if A =∗ B then B ∈ H.

(2) For every A ∈ H and A ≤∗ B, B ∈ H.

(3) For every family {An : n ∈ ω} ⊆ H such that An+1 ≤∗ An for every n ∈ ω, there
exists B ∈ H such that B ≤∗ An for every n ∈ ω.

(4) For every A ∈ H and every coloring c : FU(A)→ 2 there exists B ≤ A in H such
that FU(B) is monochromatic.

If U is a stable ordered-union ultrafilter, then U∞ is a Matet-adequate family. Eis-
worth shows that if H is a Matet-adequate family, forcing with (H,≤∗) adds a stable
ordered-union ultrafilter.

Given a Matet-adequate family H, the forcing PFIN can be modified to define PH
as he collection of conditions (s, A) where s ∈ FIN<∞ and A ∈ H, with the same order
relation as before.

Standard arguments give that a generic PH extension can be obtained first adding
a stable ordered-union ultrafilter U with (H,≤∗) and then forcing with PU . From this
we can argue as in [7], [4] and as in the previous section to show that PH has both the
pure decision property and the hereditary genericity property.

In a forthcoming article ([3]) several of these results are generalized to the context
of topological Ramsey spaces of [12].
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